Spontaneous Freezing of Supercooled Water under Isochoric and Adiabatic Conditions

Santi Prestipino*†‡ and Paolo V. Giaquinta*†

†Dipartimento di Fisica e di Scienze della Terra, Università degli Studi di Messina, Contrada Papardo, I-98166 Messina, Italy
‡CNR-IPCF, Viale F. Stagno d’Alcontres 37, I-98158 Messina, Italy

ABSTRACT: The return of a supercooled liquid to equilibrium usually begins with a fast heating up of the sample which ends when the system reaches the equilibrium freezing temperature. At this stage, the system is still a microsegregated mixture of solid and liquid. Only later is solidification completed through the exchange of energy with the surroundings. Using the IAPWS-95 formulation, we investigate the adiabatic freezing of supercooled water in a closed and rigid vessel, i.e., under thermally and mechanically isolated conditions, which captures the initial stage of the decay of metastable water to equilibrium. To improve realism further, we also account for a fixed amount of foreign gas in the vessel. Under the simplifying assumption that the system is at equilibrium immediately after the nominal freezing temperature has been attained, we determine—as a function of undercooling and gas mole number—the final temperature and pressure of the system, the fraction of ice at equilibrium, and the entropy increase. Assuming a nonzero energy cost for the ice–water interface, we also show that, unless sufficiently undercooled, perfectly isolated pure-water droplets cannot start freezing in the bulk.

I. INTRODUCTION

When gently cooled below its equilibrium freezing point, liquid water becomes metastable, remaining in a state of apparent equilibrium until a favorable density fluctuation promotes the nucleation of ice. Once the first solid embryo has formed, ice growth proceeds so rapidly that crystallization of water initially occurs, to all practical purposes, adiabatically, i.e., as though water were thermally isolated from the environment. This phenomenon is well-known, especially in atmospheric science and metallurgy. It is accompanied with a steep temperature increase (recalescence), caused by the latent heat released during solidification, and is signaled by a sudden slowing of the sample or a change of color whatsoever. Freezing is nevertheless still partial after recalescence, requiring more time to be completed via standard heat transfer to the bath. The relative amount of water and ice at the end of the recalescence stage will clearly depend on the extent of undercooling as well as on the type of constraints applied to the system, e.g., whether its volume or pressure (besides the total mass) has been kept fixed.

Recalescence is an amazing phenomenon, since one might reasonably expect crystallization of a supercooled liquid to occur isothermally, with the energy reservoir grabbing all the heat generated by the formation of ice. Indeed, the entropy of the universe (system plus bath) is maximized in the stable crystal phase at the temperature of the bath. By contrast, what is often found is that kinetics influences the crystallization process in an essential way, bringing rapidly the system to the equilibrium freezing temperature before conduction of heat to the bath becomes effective. The route to equilibrium would be different if, for some reasons, crystal growth were much slower, as in intrinsically anisotropic crystals. In this case the initial temperature rise would be milder and the system probably would not pass through intermediate states of two-phase coexistence at the freezing point.

Recently, Aliotta et al. discussed the adiabatic freezing of water under constant-pressure conditions. Upon modeling water by the IAPWS-95 formulation, they focused their attention on the behavior of volume at ambient pressure and found that the spontaneous freezing of water invariably results in an expansion. After reaching a maximum for a moderate undercooling, the expansion decreases on further cooling until it becomes negligible at a temperature close to the homogeneous-nucleation temperature, \(T_H \approx 232 \, \text{K} \), which sets the ultimate threshold for water metastability. This behavior is different from that of other liquids, where the volume gap between the solid–liquid mixture and the metastable liquid varies monotonously with undercooling. Such a difference was traced back to the volumetric anomaly of water. Prestipino has also studied the adiabatic freezing of a mean-field fluid in a rigid vessel, also in the presence of a small amount of foreign gas in the container, and found a rather complex behavior in the properties (final temperature and pressure, solid fraction, and entropy increase) characterizing this type of irreversible freezing.

The method employed in ref 11 was entropy maximization. It assumes that at the end of recalescence the system is found in an equilibrium mixed state. Actually, as discussed at length in ref
II. METHOD

Experimentally, the clearest imprint of recalcience in water is a sudden increase of temperature which abruptly jumps (in a time which can be as low as a few hundredths of a second) from the nucleation temperature to the equilibrium freezing temperature. During this time no significant amount of heat can flow to the bath and (partial) freezing then occurs adiabatically.

In Figure 1 we schematically illustrate, for the reader’s convenience, the two steps in which a virtual experiment on adiabatic freezing is articulated under either isochoric or isobaric conditions, pretending that the outcome of the process in an equilibrium state. The system under focus here is a normal liquid, viz., the van der Waals liquid described by the theory developed in refs 14 and 15, which was the object of the study carried out by Prestipino in ref 11. Initially at point A, the liquid is subsequently cooled down to B (a metastable state), at temperature T_m. Next, heat exchange with the environment is impeded and the solid is made to nucleate, until point C (temperature T_m) is reached. We see that in both the isochoric and isobaric cases the final equilibrium state C is a two-phase state. Under constant-volume conditions, the final temperature T_{fin} is intermediate between T_m and T_m (the melting/freezing temperature at a given pressure P_m), and the pressure is lower than P_m. The outcome of the same experiment on water can be anticipated on the basis of a construction analogous to that depicted in Figure 1, which is reported in Figure 2, where due account was taken of the change in relative position arising from solid and liquid on the isotherm for $T = T_m$ (point A now lies on the small-volume side of the tie line). As far as the other features of Figure 2 are concerned, we relied on the data reported in Table 19 of ref 12. At variance with Figure 1, the metastable liquid branch (long-dashed line) is shifted to pressures higher than P_m; hence, when keeping the volume fixed, the final pressure P_{fin} will be larger than P_m.

We now describe the setup used for studying the adiabatic freezing of supercooled water in a rigid vessel. Consider a number N of water molecules which completely fill a closed rigid container of volume V. Water, initially in equilibrium at the temperature T_{eq}, is then slowly cooled until the temperature T_{eq} has been reached. At this point, if ice nucleation has not yet occurred, the pressure and energy of water (P_{eq} and E_{eq}) can be computed through the (mechanical and thermal) equations of state of the metastable branches. Now, imagine removing the contact with the thermostat and inducing, by any means, the irreversible decay of the system to equilibrium. Our aim is determining in which equilibrium state the system will
evolution set down. With the caveats made above, this
question may be answered by resorting to the maximum-
entropy principle. Envisaging that part of the original water may
remain liquid, we denote by \(E, V, N \) the energy, volume,
and particle number of the liquid fraction. By further assuming
a weak coupling between the solid (s) and liquid (l) water
phases, and taking the overall constraints into account, the total
entropy reads

\[
S_{\text{tot}} = S_s(E_f, V_f, N_f) + S_l(E_m - E_f, V - V_f, N - N_f)
\]

(2.1)

where \(E, V, N \) are internal variables to be determined. The
three conditions for the maximum of (2.1) are tantamount to
requiring the same temperature, pressure, and chemical
potential for both phases. Hence we see that (unless
\(N_f = 0 \) or \(N_f = N \)) the final equilibrium state lies on
the solid–liquid coexistence locus, as empirically observed.

As a matter of principle, in order to characterize the
equilibrium two-phase state resulting from the maximization
of (2.1), one would need the entropy functions (fundamental
relations) of water and ice. However, we can alternatively resort
to a different thermodynamic potential for each phase, such as
the Helmholtz or Gibbs potential, or to the knowledge of the
equations of state, if available. This is actually the type of
information provided by the IAPWS-95 formulation for the
thermal properties of water\(^{10} \) and by its counterpart for
hexagonal ice.\(^{12} \) In particular, while the IAPWS-95 formulation
provides the specific (i.e., per unit mass) Helmholtz free energy
of liquid water, \(f(T, \rho) \), as a function of temperature \(T \) and
mass density \(\rho \), it is the specific Gibbs free energy, \(g(T, P) \), that is
available for ordinary ice in ref 12.

We originally explored the possibility of seeking the
maximum of eq 2.1 by the simulated-annealing method,
which was the technique employed in ref 11 to analyze the
adiabatic freezing of a mean-field fluid. However, in the present
case this method did not work essentially because of the extreme
sensitivity of water temperature and pressure to the
small uncorrelated variations of energy and volume induced by
the fake dynamics typical of the method. Hence, we
implemented a different but equivalent procedure. Rather
than maximizing the total entropy, we tried to solve the system
of equations enforcing (i) the thermodynamic coexistence of
water and ice in the final state, and (ii) the conservation laws
of volume and energy. Specifically, the set of equations
corresponding to the maximization of (2.1) reads

\[
\begin{align*}
\rho P(T, \rho) &= P \\
g_l(T, \rho) &= g_s(T, P) \\
\frac{x_l}{\rho} + (1 - x_l)v_l(T, P) &= v_{\text{tot}} \\
x_lg_l(T, \rho) + (1 - x_l)\epsilon(T, P) &= \epsilon_{\text{tot}}
\end{align*}
\]

(2.2)

where \(x_l = N_l/N \) is the liquid fraction, \(v_{\text{tot}} = V/M \) is the
(constant) specific volume, \(M \) being the total mass, and \(\epsilon_{\text{tot}} =
E_{\text{tot}}/M \) is the specific energy of supercooled water at \(T_{\text{tot}} \).
In addition, \(P, g, \) and \(\epsilon \) denote the pressure, specific Gibbs free
energy, and specific energy of the liquid phase, respectively,
while \(v \) and \(\epsilon \) represent the specific volume and energy of the
solid phase. All such functions can be derived from \(f(T, \rho) \) and
\(g_s(T, P) \) in an obvious way. Clearly, the unknown quantities
in (2.2) are \(T, P, \rho, \) and \(x_l \); the existence and uniqueness of the
solution set are assured by the concavity of the entropies in
(2.1).

While leaving the analysis of this solution to section III, we
comment here on the method used to solve the nonlinear
system (2.2) numerically and on the precision of the data
extracted. The method of choice for this type of problems is the
time-honored Newton–Raphson method,\(^{13} \) which also works
in more than one dimension. This method makes use of an
iterative scheme which usually converges if one starts not too
far away from the target state; in our case the solution was
obtained with the highest possible precision in 10–20 iteration
steps. In fact, increasing more the number of steps does not
reduce the error further, because of computer limitations in
handling the real and complex numbers which enter the
calculation. This notwithstanding, each unknown of (2.2) was
typically obtained with 10 exact significant digits.

III. RESULTS

In this section we analyze the properties of the heterogeneous
state attained by supercooled water at the end of its isochoric–
adibatic relaxation to equilibrium. Two different experimental
situations are discussed, depending on whether water alone fills
the given volume or there is, in addition, a fixed amount of gas
(for instance, some air) in the container. These two cases are
treated separately in the following.

A. Pure Water in a Rigid Vessel. Let us first quantitatively
analyze the situation illustrated in Figure 2, panel (a). Initially,
the water temperature and pressure are \(T_{\text{in}} \) and \(P_{\text{in}} \) defiving a
point on the ice–water coexistence locus (the red dashed line
in the figure). In this state, dubbed A in Figure 2, the specific
volume is \(v_{\text{in}} \equiv \rho^{-1} \), with \(\rho_{\text{in}} \) implicitly given by

\[
P(T_{\text{in}}, \rho_{\text{in}}) = P_{\text{in}}
\]

(3.1)

We just note that the initial volume coincides with the total
volume, \(v_{\text{tot}} \), since we assumed that water completely fills
the container. This fixes the water mass \(M \) and the molecule
number \(N \) for any assigned \(V \). After cooling water down to \(T_{\text{in}} < T_{\text{in}} \)
(state B), its pressure and specific energy become equal to

\[
P_{\text{in}} = P(T_{\text{in}}, \rho_{\text{in}}) \quad \text{and} \quad \epsilon_{\text{in}} = \epsilon(T_{\text{in}}, \rho_{\text{in}})
\]

(3.2)

With these starting conditions, the equilibrium state (C)
eventually reached by the system after disconnecting the bath
and inducing solid nucleation is the one yielding the maximum
of (2.1) or, which amounts to the same thing, the one obeying
the set of eqs 2.2.

We studied in detail the ambient-pressure case, \(P_{\text{in}} = 101.325 \)
Pa (for this pressure, \(T_{\text{in}} = 273.152 \) K and \(v_{\text{in}} = 1.000 \times 10^{-3} \)
\(\text{m}^3 \text{kg}^{-1} \)). In Figure 3 the final values of the system
temperature and pressure are reported as a function of \(T_{\text{in}} \)
(red curves through crosses). As expected from Figure 2, we have
\(T_{\text{in}} < T_{\text{in}} < T_{\text{in}} \) (i.e., water heats up during the transformation)
and \(P_{\text{in}} > P_{\text{in}} \). Though water does not generally recover the original
temperature after isochoric recalcience, nevertheless it should
be considered that the pressure has increased as well. In fact, for
any value of \(T_{\text{in}} \) \(T_{\text{in}} \) and \(P_{\text{in}} \) are the coordinates of a point on
the ice–water coexistence line. If water supersaturation is low
or moderate, \(T_{\text{in}} \) can be hardly distinguished from \(T_{\text{in}} \). The solid
fraction in the equilibrium state is plotted in Figure 4; it steadily
increases with the undercooling extent \(T_{\text{in}} - T_{\text{in}} \), approaching 40%
for \(T_{\text{in}} \). Finally, Figure 5 reports the entropy increase in the
transformation, which is larger the lower \(T_{\text{in}} \).
B. Water with a Foreign Gas. Now suppose that water is prepared at T_m and P_m by exposure to a gaseous atmosphere, and that a small amount of gas gets trapped in the vessel. We then have water in equilibrium with a foreign (and, for simplicity, immiscible) gas in a container of fixed volume. To simplify the analysis further, the gas is treated as ideal and monatomic, and let x_g be the ratio of the gas mole number to that of water. The initial specific volume of the liquid, v_{tot}, is still obtained by solving eq 3.1 but now we have $v_m < v_{\text{tot}}$. Precisely, the ratio of the total volume to water mass is

$$v_{\text{tot}} = v_m + \frac{x_g R T_m}{P_m}$$

where $R = 461.518 \, \text{J kg}^{-1} \, \text{K}^{-1}$ is the specific gas constant, namely the ratio of the universal gas constant to water molar mass. As before, we imagine that water and gas are cooled very slowly until a temperature T_{in} is reached. At this point, the specific volume v_m of water is determined by minimizing the total Helmholtz free energy,

$$F/M = f(T_{\text{in}}, v_{\text{in}} - 1) + x_g f_{\text{id}}(T_{\text{in}}, \rho_g)$$

where $\rho_g \equiv n_g / V_g = x_g / (v_{\text{tot}} - v_m)$ (f_{id} is the ideal-gas Helmholtz free energy per mole divided by the water molar mass). This leads immediately to the equation

$$P(T_m, v_{\text{in}}^{-1}) = \frac{x_g R T_m}{v_{\text{tot}} - v_{\text{in}}}$$

which prescribes the same pressure for water and gas. Equation 3.4 was solved by the Newton–Raphson method (for the smallest x_g considered, the bisection method proved superior for deep undercoolings).

After removing the bath, we imagine to induce ice nucleation by, e.g., a mechanical shock, and wait for the system to reach equilibrium. The state eventually attained is the one that maximizes the total entropy

$$S_{\text{tot}} = x_s s_l(T_s, v_s) + (1 - x_s) s_s(T_s, v_s)$$

$$+ x_g s_{\text{id}}(\rho_g)$$

$$\left(\frac{e_{\text{m}} - x_s e_l - (1 - x_s) e_s}{x_g} \frac{v_{\text{tot}} - x_g v_s - (1 - x_g) v_{\text{s}}}{x_g} \right)$$

where $e_{\text{m}} = e(T_{\text{in}}, v_{\text{in}}^{-1}) + (3/2) x_g R T_m$ (note that s_l and s_s are entropies per unit mass, whereas s_{id} is the ideal-gas entropy per mole divided by the water molar mass). If one is able to find the maximum of S_{tot}, the ensuing values of e_l, v_l, x_l, e_s, v_s will provide a complete description of the equilibrium state. Upon noting that the five conditions for the maximum of (3.5) are equivalent.
to requiring the same temperature and pressure for water, ice, and the foreign gas at equilibrium, as well as equal chemical potentials for the liquid and solid fractions in the ice—water mixture, a different solution method is possible and actually preferable (for the same reasons exposed in section II). Calling \(v_g \) the molar volume of the gas divided by the water molar mass, the resulting set of equations analogous to (2.2) is

\[
\begin{align*}
\rho(T, P) &= P \\
g_x(T, P) =& g_x(T, P) \\
\frac{x_i}{\rho} + (1 - x_i)v_i(T, P) + x_g v_g &= v_{\text{tot}} \\
x_gT_x(T, P) + (1 - x_i)v_x(T, P) + (3/2)x_gRT &= e_{\text{in}} \\
P_{bi} &= RT
\end{align*}
\]

(3.6)

which is again solved by the Newton–Raphson method.

In order to characterize adiabatic freezing, useful quantities to be monitored as a function of \(T_{in} \) are the following: the pressure and temperature of the ice—water mixture at equilibrium, \(P_{in} \) and \(T_{in} \); the specific volume of the mixture, \(v_{\text{mix}} \); as compared to \(v_{\text{in}} \); and the entropy of the mixture, in comparison with the entropy of the supercooled liquid. We examined a few \(x_g \) values in the range from \(10^{-5} \) to \(10^{-4} \) for \(P_{in} = 101325 \) Pa. In Figure 3 we report data for \(P_{in} \) and \(T_{in} \) as a function of undercooling. We see that the gas, when present in an appreciable amount, acts as a pressure moderator; in particular, \(P_{in} \) is extremely close to \(P_{in} \) down to a threshold temperature \(T \), which is pushed down and down upon increasing \(x_g \) until, beyond a certain \(x_g \) value, \(T \) drops below \(T_{in} \). In this case, practically the same results of isobaric–adiabatic freezing are recovered. Near \(T \) we observe a change of slope in all curves, related to an abrupt crossover in the gas pressure at \(T_{in} \) (i.e., the right-hand side of eq 3.4) from small to very large values, i.e., only above \(T \) the gas volume at \(T_{in} \) is a significant portion of the total volume (see Figure 6). Hence, the gas provides a way to continuously interpolate between the isochoric and isobaric cases of adiabatic freezing of pure water.

In Figure 4, the equilibrium ice fraction is plotted for various values of \(x_g \). Compared to \(x_g = 0 \), the amount of ice formed at equilibrium is larger, the more so the larger \(x_g \) values in the range from \(10^{-5} \) to \(10^{-4} \). The black curve is practically coincident with that for \(x_g = 3 \times 10^{-5} \) (above) and \(10^{-5} \) (below). The black curve is practically coincident with that for isenthalpic freezing.

Figure 6. Adiabatic freezing of water under isochoric conditions: initial (i.e., \(T = T_{in} \), dotted line) and final volume (full line) for \(P_{in} = 101325 \) Pa, plotted as a function of the supercooling temperature \(T_{in} \) (same notation as in Figures 3, 4, and 5). Data for a number of \(x_g \) values are shown: \(10^{-4} \) (black empty dots), \(3 \times 10^{-5} \) (blue squares), and \(10^{-5} \) (magenta triangles). Data points are joined by line segments. The horizontal dashed line marks the value of \(v_{in} \). The two horizontal green full lines locate the value of \(v_{in} \) for \(x_g = 3 \times 10^{-5} \) (above) and \(10^{-5} \) (below). The black curve is practically coincident with that for isenthalpic freezing.

overlooking the porous structure of the mushy zone as well as any interfacial effect at the boundary between water and its container, just the simple consideration of a spherical ice—water interface unveils a fundamental limitation of the adiabatic-freezing scenario as depicted above. Indeed, this is what was found for the van der Waals liquid,11 where, under perfect isolation, no freezing can initiate in the bulk if undercooling is too small. The same analysis is repeated here for supercooled water.

Our reasoning, which is similar to a proof per absurdum, goes as follows. Let us assume that the outcome of water freezing below \(T_{in} \) is a stable mixture of water and ice. We make the further hypothesis that homogeneous (rather than heterogeneous) nucleation supersedes the onset of freezing. By modeling the ice fraction as a spherical (not necessarily tiny) mass, we assign a constant free energy \(\gamma \) to its surface (for instance, \(\gamma = 2.8 \times 10^{-2} \) J m\(^{-2} \), which is the value of the ice—water interface free energy at normal freezing conditions5). While this scenario is certainly too simplified, since it overlooks the dependence of the interface free energy on the droplet radius \(r \) (see, e.g., ref 16) as well as on the surface orientation,17 it would be nonetheless sufficient to grasp the essence of the phenomenon. With the above settings, the entropy of a mass of the water hosting a spherical ice droplet of mass \(M \) is written, in terms of the specific ice values of energy and volume, as

\[
S_{\text{tot}}(e_i, v_i, M, E_{in}, V, M) = (M - M_i)e_i + M_i v_i
\]

(4.1)

where \(E_{in} \) is the total energy (we note that, for a constant \(\gamma \), the entropy and the particle number attached to the interface are both zero by the Gibbs adsorption equation11). In eq 4.1, the specific energy and volume of the liquid fraction are respectively given by
\[\epsilon_i = \frac{E_i}{M_i} = \frac{E_{in} - M_i \epsilon_s - (36 \pi)^{1/3} \gamma (M_i \epsilon_s)^{2/3}}{M - M_i} \quad \text{and} \]
\[v_i = \frac{V_i}{M_i} = \frac{V - M_i v_s}{M - M_i} \quad (4.2) \]

For \(\gamma = 0 \), the maximum of (4.1) clearly coincides with that of (2.1) for the same \(T_{in} \).

The values of the internal variables \(\epsilon_i, v_i, M_i \) in a stationary (possibly unstable) equilibrium state are obtained by equating the three partial derivatives of \(S_{tot} \) to zero. It is then a simple matter to show that these conditions are equivalent to
\[T_i(\epsilon_i, v_i) = T_i(\epsilon_i, v_i) \]
\[P_i(\epsilon_i, v_i) = P_i(\epsilon_i, v_i) + \frac{2\gamma}{r} \]
\[\mu_i(\epsilon_i, v_i) = \mu_i(\epsilon_i, v_i) \quad (4.3) \]

where again \(r = (3M_i \rho/(4\pi))^{1/3} \). Hence, any cluster of ice in equilibrium with liquid water should have the same temperature and chemical potential as the melt, while the two pressures are equilibrium with liquid water should have the same temperature associated with the absolute maximum of \(S_{tot} \).

4.3 would hold for the cluster of ice in the heterogeneous state equations analogous to (2.2), namely
\[
\begin{align*}
\rho K_i(T, \rho) - P &= K_i(1 - \chi_i)^{-1/3} v_i(T, P)^{-1/3} \\
\rho g_i(T, \rho) &= g_i(T, P) \\
v_i(T, \rho) + (1 - \chi_i) v_i(T, P) &= v_{tot} \\
x_i \rho \epsilon_i(T, \rho) + (1 - \chi_i) \epsilon_i(T, P) + K_2 \\
(1 - \chi_i)^{2/3} v_i(T, P)^{2/3} &= \epsilon_{in} \\
\end{align*}
\]

where
\[K_i = \left(\frac{32a}{3M} \right)^{1/3} \gamma \quad \text{and} \quad K_2 = \left(\frac{36\pi}{M} \right)^{1/3} \gamma \quad (4.5) \]

To be sure that the correct solution of eqs 4.4 is being picked out, the starting point of the Newton–Raphson iteration is chosen as the solution of (2.2) for the same \(T_{in} \). The interface free energy is then gradually switched on, and the entropy maximum point recalculated, until \(\gamma \) is led back to the right value.

However, for low enough supersaturation, the maximum of the total entropy is invariably found for \(M_i = 0 \). In order to clarify what is going on, we should look at the graph of the function \(\Delta S = S_{tot}(\epsilon_i, v_i, M_i; E_{in}, V_i, M) - M \delta (E_{in}/M, V/M) \), which represents the entropic advantage of the two-phase system over the supercooled liquid. To simplify it further, \(\Delta S \) is projected onto the one-dimensional subspace where \(\epsilon_i \) and \(v_i \) take the same values as in the point of the absolute maximum of \(S_{tot} \). We are thus left with a function of \(M_i \) only, or equivalently of the radius \(r \), which is reported in Figure 7 for two small values of \(N \) (10⁶ and 10⁸) and a few undercooling temperatures (note that the functional form of \(\Delta S \) is not strictly needed to plot the graph on Figure 7; in fact, the values of \(T_{in} \) and \(P_{in} \) for ice, as determined by solving eqs 4.4, suffice). A glance at Figure 7 immediately reveals the existence of a positive maximum of \(\Delta S \) for a nonzero \(M_i \) value, corresponding to a two-phase equilibrium state. However, a satellite maximum also exists at the origin, which is separated from the former one by an entropic “barrier” (the valley between the two peaks), and when the extent of supercooling becomes sufficiently low, the absolute maximum of \(\Delta S \) jumps to \(M_i = 0 \). Hence, (i) ice formation is thermally activated (i.e., the crossing of the entropic barrier requires a favorable density fluctuation), and (ii) for any fixed value of \(N \), there is an undercooling threshold (negligible for macroscopic \(N \)) that should be overcome in order that solidification may occur. Figure 8 displays the minimum supercooling threshold for a number of \(N \) values. Beyond this threshold, the assumption of a rapid yet partial solidification of water, which is at the heart of the present calculation, should be rejected—since no ice fraction is found in the equilibrium state—and the onset of solidification would necessarily occur at the surface of the system in contact with the bath. Upon reducing the supersaturation even further, the
relative maximum for $M_t > 0$ disappears and no tiny piece of ice, even metastable, can form. We note that a scenario similar to the one described above has recently been reported for the canonical-ensemble description of liquid nucleation from the vapor.\(^{18}\)

In Figures 3, 4, and 5, some properties of the heterogeneous equilibrium state for a nonzero γ are reported. We first note that, compared to a costless interface, the final equilibrium temperature is lower by an amount which roughly scales as r^{-1} (Figure 3, top panel). The depression of T_{fin} is a clear manifestation of the Gibbs–Thomson effect, which refers to the observation that small crystals are in equilibrium with their own melt at a lower temperature than large crystals. It is also evident from the figure that the variation of r with supercooling leads to a notable nonmonotonic dependence of the equilibrium temperature on T_{fin}. Similar reductions with respect to $\gamma = 0$ values are found in the final pressure (Figure 3, bottom panel), in the ice fraction (Figure 4), and in the entropy increase ΔS (Figure 5). Actually, we are not aware of any experimental or numerical-simulation studies where the above predictions can be tested in detail.

Summing up, the aim of the above calculation was to check whether the assumption of adiabaticity in the spontaneous freezing of supercooled water can survive the inclusion of the interface-energy contribution. A necessary condition for this is a positive maximum of ΔS which, however, only appears beyond a certain N-dependent undercooling threshold that is negligible in the large-size limit. This implies that a small amount of water should be cooled sufficiently deep in order that freezing may start in the bulk; otherwise, homogeneous ice nucleation is obstructed and freezing proceeds directly from the system boundaries.

V. CONCLUSIONS

The spontaneous freezing of a supercooled liquid occurs adiabatically whenever solid growth is sufficiently rapid, as in the case of, e.g., water. In this circumstance, the energy released during solidification does not reach the thermostat but is almost completely used in the heating up of the system, whose temperature raises quickly until the equilibrium freezing temperature is attained. Only later will crystallization proceed by heat transfer to the bath.

In this paper, we have studied the isochoric–adiabatic freezing of supercooled water, as modeled by the IAPWS-95 formulation;\(^{10}\) for ice properties we employed the scheme of ref 12. We have characterized the thermodynamic state of the two-phase equilibrium emerging from the decay of the metastable state in two different experimental setups, i.e., in the presence as well as in the absence of a spectator gas. We have thus found that the spontaneous freezing of water always occurs with a system expansion, as under constant-pressure conditions,\(^{9}\) and that by tuning the amount of gas present in the container one is able to interpolate between the isochoric and isobaric cases of adiabatic freezing. The hidden assumption behind our calculations is that the state of the system emerging from recalcation is an equilibrium one. However, the outcome of adiabatic freezing is usually a mushy zone, which only slowly evolves to equilibrium. Anyway, considering that solid dendrites are huge on the molecular scale, we argue that at least the overall trends of the relevant system properties with supercooling should be largely insensitive to the late system relaxation dynamics and could thus be predicted by the maximum-entropy method.

In order to see whether surface effects can play any role in the irreversible freezing of small water samples under isolation, we have then included the energy cost of the ice–water interface in the treatment, while assuming no role for heterogeneous nucleation. We have thus shown that, under isolated conditions, a minimum supersaturation is needed in order that freezing may start in the bulk.

AUTHOR INFORMATION

Corresponding Author

E-mail: sprestipino@unime.it (S.P.); paolo.giaquinta@unime.it (P.V.G.)

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge useful discussions with Franco Aliotta, Rosina C. Ponterio, Franz Saija, and Cirino Vasi.

REFERENCES

